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Diagnostic Checking of Unobserved- 
Components Time Series Models 
Andrew C. Harvey and Siem Jan Koopman 

Department of Statistics, London School of Economics, London WC2A 2AE, United Kingdom 

Diagnostic checking of the specification of time series models is normally carried out using the 
innovations-that is, the one-step-ahead prediction errors. In an unobserved-components model, 
other sets of residuals are available. These auxiliary residuals are estimators of the disturbances 
associated with the unobserved components. They can often yield information that is less 
apparent from the innovations, but they suffer from the disadvantage that they are serially 
correlated even in a correctly specified model with known parameters. This article shows how 
the properties of the auxiliary residuals may be obtained, how they are related to each other 
and to the innovations, and how they can be used to construct test statistics. Applications are 
presented showing how residuals can be used to detect and distinguish between outliers and 
structural change. 

KEY WORDS: Misspecification; Outliers; Signal extraction; Smoothing; Structural change; 
Structural time series model. 

Diagnostic checking of the specification of a time 
series model is normally carried out using the innova- 
tions-that is, the one-step-ahead prediction errors. In 
an unobserved-components model, other residuals are 
available. These auxiliary residuals are estimators of the 
disturbances associated with the unobserved compo- 
nents. The auxiliary residuals are functions of the in- 
novations, but they present the information in a dif- 
ferent way. This can lead to the discovery of features 
of a fitted model that are not apparent from the in- 
novations themselves. Unfortunately, the auxiliary re- 
siduals suffer from the disadvantage that they are se- 
rially correlated, even in a correctly specified model 
with known parameters. The purpose of this article is 
to show how the properties of auxiliary residuals may 
be obtained, how they are related to each other and to 
the innovations, and how they can be used to construct 
test statistics. The methods extend straightforwardly to 
models containing observed explanatory variables. 

Section 1 derives the properties of the auxiliary resid- 
uals using the classical approach based on a doubly infinite 
sample. This follows Maravall (1987), except that in his 
article attention is restricted to the irregular component 
in the decomposition of an autoregressive integrated mov- 
ing average (ARIMA) model. Although we initially give 
general results, our main interest lies in structural time 
series models since, in our view, these models provide 
the most satisfactory framework for exploring issues con- 
cerning outliers and structural change. Structural time 

iliary residuals in finite samples in any linear state-space 
model. This algorithm, the full details of which were 
given by Koopman (in press), is a development of ear- 
lier work by De Jong (1989) and Kohn and Ansley 
(1989). The efficiency and speed of the algorithm makes 
the computation of diagnostic procedures based on the 
auxiliary residuals a viable proposition. 

The interpretation of the auxiliary residuals means 
that they are potentially useful, not only for detecting 
outliers and structural changes in components but for 
distinguishing between them. Thus we extend the work 
of Kohn and Ansley (1989), which was concerned only 
with the residuals that are estimators of the irregular 
disturbances and the way in which these residuals may 
be used to detect outliers. Sections 3 and 4 discuss di- 
agnostics. It is shown how the Bowman-Shenton test 
can be modified to take account of the serial correlation 
in the auxiliary residuals, and Section 5 applies it to 
several data sets. Related modifications can also be 
made to certain tests for heteroscedasticity, but this 
particular issue is not pursued here. 

1. 	 PROPERTIES OF RESIDUALS IN LARGE 
SAMPLES 

Classical results in signal extraction can be used to 
derive the properties of various auxiliary residuals in a 
doubly infinite sample. Let the observed series, y,, be 
the sum of m + 1mutually uncorrelated ARIMA proc- 
esses pi,; that is, 

series models are now quite widely used, and a full de- 	 m " Oi(L)scription can be found in the work of Harvey (1989). Yr = C pit = zo ti, (1.1)
Section 2 derives various relationships between the i = O  

auxiliary residuals in finite samples. We then discuss a where B,(L) and 4i(L) are polynomials in the lag op- 
general algorithm that can be used to compute the aux- erator and the ti,are mutually and serially uncorrelated 
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random variables with zero means and constant vari- 
ances # (i = 0, . . . , m). The autoregressive poly- 
nomials may contain unit roots. The minimum mean 
squared linear estimator (MMSLE) of pi,is 

see Bell (1984). If the reduced form is 

where 5, is white noise, with variance a2, then 

Pit = {I+i(L)I -21ei(L)12a;'JI+(L)I -21e(L)12~}~t  (1.4) 

Since the MMSLE of ti, is given by lit= 
+,(L)O;'(L)P,,, we have, from (1.2), (1.3), and (1.4), 

The last expression may be written as 

where F = L- '  is the lead operator. Unit roots in +i(F) 
will cancel with unit roots in +(F) ,  so, if time is reversed, 
litis seen to be an autoregressive moving average 
(ARMA) process, driven by the innovations 5,. The 
process is stationary but, due to the possibility of unit 
roots in +(F), not necessarily strictly invertible. 

The autocovariance function (ACF) of ti,may be 
evaluated from a knowledge of the ARMA process im- 
plied by (1.6). Alternatively, we may note that the 
autocovariance generating function of litis 

where g(L) = Xl+i(L)I-210i(L)12#. Given a method of 
computing gi(L), the autocovariances may be obtained. 

We now apply these results to some of the principal 
structural time series models. 

1.I Local Level 

The local-level model is 

and 

where E, and 7,are mutually uncorrelated white-noise 
processes with variance 4 and 4.The reduced form 
is the ARIMA (0, 1, 1) model 

with 

0 = ( d ( $  + 49) - 2 - q)/2, (1.9) 

where q = 4 1 4 .  
Writing the model as 

Yt = 
'lt + E,, 

and applying (1.6) gives 

and 

Thus both 2, and 4, depend on future innovations and, 
if time is reversed, it can be seen that 4, follows an 
(autoregressive) AR (1) process with parameter minus 
8, whereas 6, follows a strictly noninvertible ARMA 
(1, 1) process. Note that the effect of serial correlation 
is to make the variance of 6, less than that of E,. In fact, 
it can be shown that var(2,)/4 = -2O/(1 - 0) s 1for 
- l I O < O .  

On comparing (1.10) and (1. l l ) ,  we see that 

The theoretical cross-correlation function, p,,(~), can 
be evaluated from the preceding equation. The cross- 
covariance is yE,(r) = ={(+, - ijt+ 1)4r-7/q) (T= 0, ?1, 
+ 2 , .  . . ) , so , for  -1  < O < 0 ,  

P,,(T) = (- 8)' d(iTXj72, T z 0, (1.13) 

and 

As 4 becomes smaller, O tends toward 0 and p,,(O) 
tends towards .707. Thus, although E, and 7,are as- 
sumed to be uncorrelated, their estimators may be quite 
highly correlated. 

1.2 Local Linear Trend 

The local-linear-trend model consists of Equation 
(1.7a) with the trend having a slope. Thus 

and 

where 7, and 5, are mutually uncorrelated white-noise 
processes with variances 4and 4.The reduced form 
is the ARIMA (0, 2, 2) model 

If the structural form is expressed as 
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we find that 

and 

Thus d,, ?j,,and l,are ARMA(2, 2), ARMA(2, 1) and 
AR(2), with 6, and 4, being strictly noninvertible. The 
three processes are stationary provided that 4 > 0. 

As in the local-level model, Expression (1.12) holds, 
and in addition 

where q: = 4/02, and q, = $14. 
In typical applications, the variance of $ is relatively 

small. As a result, the moving average polynomial in 
(1.16) will have one, and possibly two, of its roots close 
to unity. The l,'s will therefore tend to exhibit very 
strong positive serial correlation. This effect is coun- 
teracted in the other auxiliary residuals by the presence 
of unit roots in the moving average. 

1.3 Basic Structural Model 

The three methods of modeling a seasonal compo- 
nent y, were described by Harvey (1989, chap. 2). All 
can be expressed in the form 

where w, denotes a white-noise disturbance with vari- 
ance 02,, s is the number of seasons, and 0,(L) is a 
polynomial of order at most s - 2. The simplest such 
model has B,(L) equal to 1. Combining with a trend 
component of the form (1.15) and an irregular yields 
the basic structural model (BSM). This may be written 

= 2 +ii-\ B,(L)w, + s,, (1.24)
A A2 S(L) 

where S(L) = 1 + L + . . . + LP1. The reduced 
form is such that 

A ~ Y ,= B(L)tt, (1.25) 

where 0(L) is of order s + 1. Then, from (1.6), 

Table 1. Theoretical Autocorrelations for the Auxiliary Residuals 
of a Quarterly Basic Structural Model With q, = 1, q, = . l ,  

and q, = .1 

and 

The residuals d,, fj,, and ltbear exactly the same rela- 
tionship to each other as in the local-linear-trend model. 
In addition, note that 

s ( n 0 ,  = q,e,(n6,, 0 < q, < x ,  (1.30) 

where q, = a2,/$. 
Explicit expressions for the autocorrelation functions 

of the ARMA processes followed by the auxiliary re- 
siduals are not easy to obtain in this case. Numerical 
values, however, can be computed for specific param- 
eter values using the algorithm described in Subsection 
2.2. As an example, for a quarterly BSM where 
0,(L) = 1, q, = 1, q, = . l ,  and q, = . l ,  the first 10 
autocorrelations are as shown in Table 1. The ACF's 
of the irregular and level residuals are not too dissimilar 
to what one might expect in a local-level model with 
q = 1, although, if anything, the serial correlation in 
the level is somewhat reduced by the presence of the 
other components. The high positive serial correlation 
in the slope residual, to which attention was drawn at 
the end of the previous subsection, is clearly apparent, 
but the seasonal residual shows a strong pattern of serial 
correlation, the most prominent feature of which is the 
high values at the seasonal lags 4 and 8. As regards 
cross-correlations (see Table 2) the relatively pro-
nounced patterns for 6rj and $suggested by the anal- 
ysis for the local-linear-trend model are still apparent, 
but the relationships involving & show seasonal effects. 

2. FINITE SAMPLES 

Relationships between auxiliary residuals, such as 
(1.12), are valid for doubly infinite samples. However, 
exact relationships can be derived for finite samples. 
The following subsection shows how this may be done 
using a very simple approach based on an idea of Whit- 
tle (1991). Unfortunately this approach does not lead 
to a viable algorithm for computing the auxiliary resid- 
uals and associated statistics such as variances and 
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Table 2. Theoretical Cross-correlations for the Auxiliary Residuals of a Quarterly Basic Structural 
Model With q, = 1, q, = . l ,  and q, = . I  

" A  

Lag iij  it EW i t  ij; i-6 

autocovariances. The ideas underlying a stable algo- 
rithm are sketched out in Subsection 2.2. 

We will use a tilde to denote finite-sample auxiliary 
residuals, thereby distinguishing them from the corre- 
sponding infinite-sample residuals of Section 1. The 
properties of the finite-sample residuals in the middle 
of the sample will be the same as the properties derived 
for the infinite-sample residuals. Note that both finite- 
and infinite-sample residuals can be regarded as mini- 
mum mean squared estimators of the corresponding 
disturbances under Gaussianity. 

2.1 Relationship Between Auxiliary Residuals 

Consider the local-level model (1.7) defined for t = 
1 to T, and suppose that the disturbances E, and 7,are 
normally distributed. Suppose also that the initial state 
is Gaussian with zero mean and a finite variance, p,; 
that is, p, - N(0, po) and it is independent of the dis- 
turbances. The logarithm of the joint density of the 
observations y,, . . . ,y, and the states pO, . . . ,p, is, 
neglecting constants, 

1 T 

Partially differentiating J with respect to each of the 
states, p,, p l ,  . . . ,p, provides a means of evaluating 
the smoothed estimators, which are, by definition, the 
expected values (and therefore the modes) of the states 
conditional on the observations. The result is the back- 
ward recursion 

The initialization, given from dJldp,, is 

b,-1 = fiT - ~ C Y T- f i ~ ) ,  (2.3) 
so (2.2) can be started at t = T by setting fi,,, equal 
to fi,. Letting p, + a gives the end condition for a 
diffuse prior- namely, 

fi2 = fi1 - 9CYl - b1). (2.4) 

Although (2.2) looks, at first sight, to be an extremely 
attractive way of computing the smoothed estimators 
of the p,'s, it is, unfortunately, numerically unstable, 
and the fi2 and fi, computed in this way are almost 
certain to violate (2.4). Nevertheless (2.2) is useful for 
the theoretical insight it provides. Noting that ij, = 

fir - (2.2) can be rewritten as in (1.12)-namely, 

but with starting value ij,,, = 0. Thus ij, is a backward 
cumulative sum of the dl's; that is, 

Furthermore, from (2.4), ij2 = -qi , ,  so, on setting t = 
2 in (2.6), it can be seen that 

It will be recalled that the ordinary least squares regres- 
sion residuals have this property when a constant term 
is included. 

A similar approach can be used in the local-linear- 
trend model to show that in a finite sample (2.3) holds 
and that (1.21) can be initialized with 4, = 0. In ad- 
dition, (2.5) holds, and if q; > 0, 

and, provided that q, > 0, 

Finally, both (2.6) and (2.7) hold if 4 > 0. 

2.2 Algorithm 

Calculation of the auxiliary residuals is carried out 
by putting the model in state-space form and applying 
the Kalman filter and smoother. The algorithm de- 
scribed by Koopman (in press) enables the computa- 
tions to be carried out relatively quickly in a numerically 
stable manner; see the Appendix. Structural time series 
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models generally contain nonstationary components, and 
these are handled by means of a diffuse prior on the 
state. In Koopman's algorithm, the calculations asso- 
ciated with the diffuse prior are carried out exactly. 

The theoretical variances of the auxiliary residuals 
near the middle of the series can be obtained directly 
from the large-sample theory of Section 1. The vari- 
ances at the beginning and end of a finite sample are 
different, however. The exact algorithm is therefore 
used to standardize all of the residuals before they are 
plotted. 

The theoretical autocorrelations and cross-correlations 
of the auxiliary residuals can be calculated exactly at 
any point in time, but for the purposes of the test 
statistics employed in Section 3 only the autocorrela- 
tions appropriate for the middle of the series need be 
used. 

3. DIAGNOSTICS 

Within the context of a structural time series model, 
an outlier arises at time t if the value taken by y, is not 
consistent with what might reasonably be expected given 
the model specification and the way in which this fits 
the other observations. The best indicator of an outlier 
should be C,; compare Kohn and Ansley (1989). Note 
that an outlier at time t will not affect the innovations 
before time t. Therefore, it makes sense that C, depends 
only on the innovations that are affected by the outlier. 

The simplest kind of structural change is a permanent 
shift in the level of a series that is of a greater magnitude 
than might reasonably be expected given the model 
specification and the other observations. Within the 
context of the local-level model, (1.7), such a shift might 
be best detected by an outlying value of ij,. Again, only 
the innovations at time t and beyond are affected by 
such a shift, and ij, combines these innovations in the 
most appropriate way. 

A sudden change in the slope is likely to be more 
difficult to detect than a shift in the level. As already 
noted, the l i s  will typically be very strongly correlated, 
so a break will spread its effect over several l,'s. Fur- 
thermore, the high serial correlation means that the 
variances of the normality and kurtosis statistics that 
will be discussed will need to be increased considerably, 
giving the tests rather low power. The seasonal residuals 
suffer a similar drawback. Furthermore, it may be dif- 
ficult to associate a sudden change in the seasonal pat- 
tern with a particular disturbance in (1.23). Neverthe- 
less, there may still be some value in using the seasonal 
auxiliary residuals to detect changes of this kind. 

The basic detection procedure is to plot the auxiliary 
residuals after they have been standardized. (As pointed 
out in Sec. 2, the residuals at the end and the beginning 
will tend to have a higher variance.) In a Gaussian 
model, indications of outliers andlor structural change 
arise for values greater than 2 in absolute value. The 
standardized innovations may also indicate outliers and 
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structural change but will not normally give a clear in- 
dication as to the source of the problem. 

A more formal procedure for detecting the unusually 
large residuals is to carry out a test for excess kurtosis. 
If this test is combined with a test for skewness, we 
have the Bowman-Shenton test for normality. For such 
tests to be asymptotically valid, it is necessary to make 
an allowance for serial correlation. 

3.1 Tests Based on Skewness and Kurtosis 

Let x, be a stationary, Gaussian time series with auto- 
correlations p, (7 = 0, 1, 2, . . .) and variance o:. 
Following Lomnicki (1961), consider the estimated mo- 
ments about the sample mean 

7-

m, = T - ' 2  (x, - F)", a = 2 , 3 , 4 ,  (3.1) 
r = l  

and define 

Then, if p, denotes the theoretical cvth moment, 

L 


<~(m, - p,) + NO, a !  K(a)c+?]. (3.3) 

This result enables asymptotically valid test statistics 
based on higher order moments to be constructed as 
follows: 

1. Excess kurtosis test. The measure of kurtosis is 

Since m, is a consistent estimator of 02, it follows that 
the excess kurtosis test statistic 

K = (b, - 3)/V24 K ( ~ ) / T  (3.5) 

is asymptotically N(0, 1) under the null hypothesis. An 
outlier test is carried out as a one-sided test on the upper 
tail. 

2. Normality test. The measure of skewness is 
V& = m,lm:'2. Combining this with b, gives the 
Bowman-Shenton normality test, which when cor-
rected for serial correlation takes the form 

Under the null hypothesis, N is asymptotically x?; see 
Lomnicki (1961). 

The normality and excess kurtosis tests may be ap- 
plied to the innovations and auxiliary residuals. In con- 
trast to serial-correlation tests, no amendments are 
needed to allow for the estimation of unknown param- 
eters; compare Subsection 4.1. The serial-correlation 
correction terms, the ~ ( a ) ' s ,  needed for the auxiliary 
residuals can be computed using the general algorithm 
of Subsection 2.2. The results in Section 1 are useful in 
that they enable one to get some idea of the likely size 
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Table 3. Correlation Factors for Basic Structural Model With 
q, = 1, q, = .I,and q, = .1 

lrregular 
Level noise 
Slope noise 
Seasonal noise 

of ~ ( a ) .  In the case of the local-level model (1.7) we 

find that for 3, 


This is unity for a random walk-that is, 6 = 0-and 
goes monotonically toward infinity as q tends toward 0; 
that is, 6 tends to minus one. On the other hand, for if, 

which is greater than or equal to unity for a = 4 but 
less than or equal to unity for a = 3. When 6 is minus 
one, it takes the values - .75 and 1.125 for a = 3 and 
4. The kurtosis test statistic, therefore, always becomes 
smaller after being corrected for serial correlation, and 
this is also true for the normality statistic when applied 
to the level residual. The normality test statistic for the 
irregular may, however, increase. For the irregular, the 
correction factors are relatively small. The high cor- 
rection factors for the level residual when 6 is close to 
minus one may appear to make the detection of struc- 
tural change difficult. If level shifts are introduced into 
an otherwise well-behaved series, however, the effect 
is likely to be an increase in the estimate of the relative 
variance of 7,and hence a corresponding increase in 6. 

For more complex models, the correction factors can 
be computed numerically using the algorithm of Sub- 
section 2.2. Table 3 shows the ~ ( a ) ' s  for the four sets 
of auxiliary residuals from the BSM of Tables 1 and 2, 
calculated using the first 20 autocorrelations. 

3.2 Monte Carlo Experiments 

A series of simulation experiments were run to ex- 
amine the performance of the test statistics discussed 
in Section 3.1. The experiments were conducted on the 
local-level model, using a sample size of T = 150 and 
different values of the signal noise ratio, q. The white- 
noise disturbances, &, and q,,were generated using the 
Box-Muller algorithm of Knuth (1981). The results 
presented in Table 4 are based on 1,000 replications 
and show the estimated probabilities of rejection for 
tests at a nominal 5% level of significance. 

Table 4(a) gives the estimated sizes of the tests. It is 
known that, for independent observations, the size of 
the Bowman-Shenton test can be some way from the 
nominal size for small samples, and Granger and New- 
bold (1977, pp. 314-315) cited evidence that suggests 
that serial correlation may make matters even worse. 
Their remarks, however, are concerned with a test sta- 
tistic in which the correction factors are based on the 
correlogram, whereas in our case the correction factor 
is based on the estimator of a single parameter 6. The 
figures in Table 4(a) indicate that the estimated type I 
errors are not too far from the nominal values for both 
the innovations and the auxiliary residuals. 

Table 4(b) shows the estimated powers of the tests 
when an outlier was inserted three-quarters of the way 
along the series. The magnitude of the outlier was five 
times af.As can be seen, the powers of the tests based 
on the irregular residual are higher than those based 
on the innovation. As we had hoped, the power of the 
tests based on the level residual are much lower. The 
kurtosis test is slightly more powerful than the normality 
test. 

A shift in the level, up by five times af, was intro- 
duced three-quarters of the way along the series to gen- 
erate the results in Table 4(c). The tests based on the 
level residual are now more powerful. 

Overall, the results are very encouraging. They sug- 
gest that the tests have acceptable sizes for moderate 
samples even when serial correlation corrections have 
to be made. Furthermore, the tests based on auxiliary 

Table 4. Estimated Rejection Probability for Tests at a Nominal 5% Level of Significance for a 
Local-Level Model With T = 150 

(a) No Innovations 
misspecification* 	 lrregular 


Level 


(b) Single Innovations 
outlier at t = 112 lrregular 


Level 


(c) Structural 	 Innovations 
shift on level Irregular 
a t t =  112 Level 

'Uncorrected tests In parentheses. 



residuals are reasonably effective in detecting and dis- 
tinguishing between outliers and structural change. 

4. MISCELLANEOUS ISSUES 

Several other issues arise in connection with diag- 
nostic checking. 

4.1 	 Tests for Serial Correlation 

In a correctly specified model, the standardized in- 
novations are normally and independently distributed 
(NID) when the parameters are known, and hence a 
portmanteau test for serial correlation is straightfor- 
ward to carry out. In the more usual case when param- 
eters have to be estimated, a correction to the degrees 
of freedom of the relevant 2 distribution can be made 
along the lines suggested by Box and Pierce (1970). As 
we have seen, the auxiliary residuals are serially cor- 
related even for a correctly specified model with known 
parameters. We may be alerted to misspecification by 
the fact that the correlograms of the auxiliary residuals 
are very different to their implied ACF's; see Maravall 
(1987). If a formal test of serial correlation is to be 
based on residuals, however, it would seem that we 
have no alternative but to prewhiten the auxiliary re- 
siduals, which, in view of (1.6), means going back to 
the innovations. 

It should perhaps be stressed that if the reduced form 
of an unobserved-components model is correctly spec- 
ified, the serial and cross-correlations in the auxiliary 
residuals tell us nothing whatsoever about the validity of 
the assumptions underlying the particular unobserved- 
components model being employed; compare Garcia- 
Ferrer and del Hoyo (in press). When we talk about 
misspecification in the previous paragraph, this is to be 
understood as meaning misspecification of the reduced 
form. When a particular unobserved-components de- 
composition is consistent with a correctly specified re- 
duced form, the question of whether the decomposition 
is a sensible one can only be resolved by an appeal to 
theoretical arguments concerning the type of properties 
one wishes components such as trends and seasonals to 
possess; see Harvey (1989, secs. 6.1 and 6.2). 

4.2 	 Residuals From the Canonical 
Decomposition 

In structural time series modeling, the components 
are specified explicitly, and the reduced form follows 
as a result of this specification. This contrasts with the 
initial specification of an ARIMA model and the sub- 
sequent decomposition of this model into unobserved 
components. The usual way in which this is done is via 
the canonical decomposition of Pierce (1979) and Hill- 
mer and Tiao (1982), the aim of which is to maximize 
the variance of the irregular term. 

This subsection examines the relationship between 
the properties of the structural and canonical decom- 
position auxiliary residuals for observations following 
an ARIMA(0, 1, 1) process. It is shown that the stan- 
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dardized residuals associated with the irregular term are 
the same, but the residuals associated with the trend 
are different. It is then argued that the structural re- 
siduals are likely to be more useful for detecting a struc- 
tural change in the level. 

The canonical decomposition of an ARIMA(0, 1, 1) 
process is such that 

where 

with E,* and v,* mutually uncorrelated white-noise pro- 
cesses. The residual estimating &,*, denoted 6,*, follows 
exactly the same process as i,,except that its variance 
is at least as great as that of E,, since u f / a 2 ( =  - 0) in 
(1.10) is replaced by (1 - 0)2/4; see Maravall (1987, 
p. 116). The standardized residuals are obviously the 
same, however. The residuals associated with q:, fj,*, 
on the other hand, follow an ARMA(1, 1) process, 

where u;2 = var($). Comparing this with (1. l l ) ,  we 
see that 

4: = (fj, + fjt+l)u;2/ff2,. (4.4) 

The fact that fj: is an average of the corresponding 
structural residuals in the current and next period means 
that it may provide a less sharply defined tool for de- 
tecting structural change. 

4.3 	 Explanatory Variables 

Explanatory variables can be added to a structural 
time series model. Thus we might have 

where p, is a stochastic trend (1.15) and x, is a k x 1 
vector of exogenous explanatory variables with asso- 
ciated k x 1 vector of coefficients, 6. If 6 is fixed and 
known, residuals are constructed exactly as in the cor- 
responding univariate model by treating y, - x:6 (t = 
1, . . . , 7')as the observed values. If 6 is unknown, the 
main issue that arises is that two sets of innovations 
may be calculated, depending on whether or not 6 is 
included in the state vector. If it is, the standardized 
prediction errors are known as generalized recursive 
residuals; see Harvey (1989, chap. 7). The distinction 
between these two sets of residuals is somewhat pe- 
ripheral to the discussion here since the auxiliary resid- 
uals are unaffected. In the example in Section 5, the 
innovations are calculated by including 6 in the state 
vector. 

5. APPLICATIONS 

The following examples illustrate the way in which 
outliers and structural changes may be detected. In all 
cases, parameter estimation was carried out in the fre- 
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quency domain, using the method of scoring described 
by Harvey (1989, chap. 4, sec. 3). 

5.1 	 U.S. Exports to Latin America 

The monthly series of U.S. exports to Latin America 
contains a number of outliers that are easily detected 
by examining the irregular components 6, from a BSM; 
see the comments by Harvey (1989) on Bruce and Mar- 
tin (1989). In fact, the principal outliers, which turn out 
to be due to dock strikes, are easily seen in a plot of 
the series and also appear quite clearly in the innova- 
tions. We therefore aggregated the data to the quarterly 
level and fitted a BSM of the form described in Sub- 
section 1.3. The outliers are now less apparent in the 
innovations, though they still emerge clearly in the ir- 
regular component; see Figure 1. The kurtosis statistic 
for the innovations is K = 2.00, and the normality 
statistic is N = 4.52. The normality statistic is therefore 
not statistically significant at the 5% level, whereas the 
kurtosis is significant on a one-sided test at the 5% level, 
but not at the 1% level. For the irregular, on the other 
hand, the raw K and N statistics are 7.92 and 90.73. 
After correction for serial correlation, these become 

K = 7.85 and N = 91.55, both of which are highly 
significant.. 

Since u2,is estimated to be 0, all of the movements 
in the trend stem from the slope disturbance. The (cor- 
rected) K and N statistics for the associated auxiliary 
residuals are only .18 and .03. The auxiliary residual 
diagnostics therefore point clearly to the presence of 
outliers. 

5.2 	 Car Drivers Killed and Seriously Injured in 
Great Britain 

Monthly observations of car drivers killed and seri- 
ously injured in Great Britain were used by Harvey and 
Durbin (1986) in their study of the effects of the seat- 
belt legislation that took effect at the beginning of Feb- 
ruary 1983. The seat-belt law led to a drop in the level 
of the series. We now show how this structural change 
would be detected by the auxiliary residuals. 

To avoid the large fluctuations associated with the 
oil crisis of 1974, a BSM was estimated using data from 
75 M7 to the end of the series in 84 M12. The slope 
and seasonal variances were both estimated to be 0, so 
the fitted model is basically a random walk plus noise, 

Figure I .  U.S. Exports to Latin America: (a) Observations (in logarithms); (b) Innovations; (c) Irregular; (d) Slope residual. 
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Table 5. Estimated Hyperparameters (x  for U.S. Exports to 

Latin America and Car Drivers Killed and Seriously Injured in 


Great Britain 


Parameters Exports Car drivers 

with a fixed slope and seasonal; see Table 5. The theory 
at the end of Subsection 3.1 therefore applies directly, 
with q = .I18 and 0 = - .710. The correction factors 
for the irregular are ~ ( 3 )  = .99 and ~ ( 4 )  = 1.00, but 
for the level they are ~ ( 3 )  = 2.12 and ~ ( 4 )  = 1.69. 

The kurtosis and normality statistics are shown in 
Table 6. The innovation statistics clearly indicate excess 
kurtosis, and the auxiliary residual diagnostics point to 
this as emanating from a change in level, with the K 
and N statistics both being statistically significant at the 
1% level. The plot of the innovations in Figure 2(b) 
shows large values in 81 M12 and 83M2 at -3.28 and 

Table 6. Diagnostic Statistics for Car Drivers 

Residual K N 

Innovation 
Irregular 
Level 

'Significant at 1% level 

-3.97. In the irregular residuals, shown in Figure 2(c), 
both of these months are -2.84, but such a value is 
not excessively large compared with those for some of 
the other months. In the level residuals, on the other 
hand, 83 M2 is -4.46, but 81 M12 is only - 1.76. 

The residuals therefore point clearly to a structural 
break at the beginning of 1983. The role of 81 M12 is 
less clear. It could be treated as an outlier; in fact, 
Harvey and Durbin (1986) noted that December 1981 
was a very cold month. Even when the model is reesti- 
mated with an intervention variable for the seat-belt 
law, however, it does not give rise to a particularly large 

Figure 2. Car Drivers Killed and Seriously lnjured in Great Britain: (a) Observations (in logarithms); (b) Innovations; (c) Irregular; (d) Level 
Residual. 
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Table 7. Parameters, Diagnostics and Goodness-of-Fit Statistics for Spirits Model 
before and after lnterventions 

No interventions InterventionsParameterslstatistics 

Income 
Price 
1909 level 
1915 outlier 
1916 outlier 
1917 outlier 
1918 outlier 
1919 outlier 

u: 

4 

a: 


Prediction error SD, u 

R2, 

Box-Ljung, Q(10) 
N 

NOTE: Figures in parentheses are t statistics, R E  is the coefficient of determination with respect to the differenced observations as in 
Harvey (1989,chapter 5), and O(P)is the Box-Ljung statistic based on the first P residual autocorrelations. 

irregular residual, though curiously enough the corre- 
sponding innovation is still quite high. 

A final point with respect to this example concerns 
checks for serial correlation. For the innovations, the 
Box-Ljung statistic based on the first 10 sample au- 
tocorrelations is Q(10) = 8.58. Thus no serial corre- 
lation is indicated. As expected from the argument in 
Subsection 4.1, the correlograms and theoretical ACF7s 
for the irregular and level residuals are quite similar 
and hence give no further hint of model misspecifica- 
tion. Nor do the sample and theoretical cross-correla- 
tions. Of course, evidence of dynamic misspecification 
can be masked by outliers and structural breaks, but in 
this instance there was still no evidence of serial cor- 
relation after the inclusion of interventions. 

5.3 	 Consumption of Spirits in the United 
Kingdom 

The per capita consumption of spirits in the United 
Kingdom for 1870 to 1938 can be explained, at least 
partly, by income per capita and relative price. A 
regression formulated in this way, however, shows sig- 
nificant serial correlation even if a time trend is in- 
cluded. Indeed the data set is a classic one and was used 
as one of the testbeds for the d statistic in the work of 
Durbin and Watson (1951). 

A regression model with a stochastic trend compo- 
nent, as in (4.5), provides a good fit in many respects. 
It is more parsimonious than the regression model with 
a quadratic time trend and a first-order autoregressive 
disturbance reported by Fuller (1976, p. 426), and the 
stochastic trend can be interpreted as reflecting changes 
in tastes. 

The estimates reported in Table 7 are for the period 
1870-1930. As can be seen, the slope is stochastic, so 

there are three sets of auxiliary residuals. The associ- 
ated test statistics are in Table 8. Kohn and Ansley 
(1989) estimated the model without a slope component, 
so pt is just a random walk. Indeed, estimating such a 
model might not be unreasonable for preliminary data 
analysis if we wish to focus attention on structural changes 
that affect the level. In this particular case, however, 
the kurtosis statistics in Table 8 are high for both the 
irregular and level residuals, and the presence of the 
slope makes very little difference. 

The plots shown in Figure 3 indicate a shift in the 
level in 1909, with several candidates for outliers during 
World War I. We fitted a level intervention first. The 
1918 outlier then stood out most clearly in the irregular. 
On estimating with a 1918 intervention, 1915 stood out 
most clearly. This led to a model with a 1909 level 
intervention together with outlier interventions at 1918 
and 1915. All of the diagnostics in this model are sat- 
isfactory. Table 7 shows the estimated coefficients of 
the explanatory variables and compares them with the 
coefficients obtained from the model without interven- 
tions. There is a clear improvement in goodness of fit, 
and this is reflected in the t statistics shown in paren- 
theses. The innovation diagnostics in the intervention 
model are entirely satisfactory. It is particularly inter- 
esting to note the reduction in the value of the Box- 
Ljung Q statistic based on the first 10 residual auto- 
correlations, Q(10); in the original model there were 

Table 8. Diagnostic Statistics for Spirits 

Residual K N 

Innovation 
Irregular 
Level 
Slope 
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Figure 3. Consumption of Spirits in the United Kingdom, 1870-1930: (a) Observations (in logarithms); (b) Explanatory Variables; (c) Innovations; 
(d) Irregular; (e) Level Residual. 

high autocorrelations at lags 8, 9, and 10, which had no able than the other observations, and taking them all 
obvious explanation. out by intervention variables may not be unreasonable. 

Referring back to Prest (1949), who originally assem- On the basis of Fig. 3(e), there is a case for a structural 
bled the spirits data set, reveals that the figures for change in 1919. The general unreliability of the obser- 
1915-1919 were estimates based on consumption in the vations in 1915 to 1919, however, makes it difficult to 
British army. Thus they may be considerably less reli- estimate such a change with any degree of confidence. 
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None of the other results change significantly when the 
1919 outlier intervention is replaced by a level shift in- 
tervention. The results are shown in the last column of 
Table 7 .  The changes in the coefficients of income and 
price are due to the influence of the observations corre- 
sponding to the additional interventions rather than the 
fact that they may be outliers; see Kohn and Ansley (1989). 

The fall in the level in 1909 is highly significant in 
both of our intervention models and indicates a per- 
manent reduction, other things being equal, of about 
9%. It is this feature that is detected by our techniques 
and that is the prime source of the difference between 
our model and that of Kohn and Ansley (1989). They 
identified 1909 as a possible outlier. Their preferred 
model has outlier interventions for the years 1915-1919 
and 1909. Fitting this model, including variations such 
as the inclusion of a stochastic slope and using time- 
domain instead of frequency-domain estimation, re-
sulted in a poorer fit than our model and somewhat 
different coefficients for the explanatory variables. A 
possible explanation for the shift in 1909 may lie in the 
program of social reforms begun in that year by Lloyd 
George; see Tsay (1986, p. 137). 

6. CONCLUSIONS 

The auxiliary residuals are serially correlated with 
each other even when the model is correctly specified. 
Nevertheless, it seems that they are a useful tool for 
detecting outliers and shifts in the level in structural 
time series models. Plots of the auxiliary residuals can 
be very informative, and these can be supplemented 
with tests for normality and kurtosis corrected to allow 
for the implied serial correlation. The examples and 
Monte Carlo experiments illustrate that the techniques 
work quite well in practice. 
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APPENDIX: SMOOTHING ALGORITHM FOR 

COMPUTATION OF THE AUXILIARY RESIDUALS 


The unobserved-components time series models dis- 
cussed in this article can be cast in the state-space form 
y r  = z:a, + x:p + e,, E ,  - NID(0, h,), a ,  = T,(Y, -~+ 
WrP + T,, 7,- NID(0, Q,), (t = 1 ,  . . . , 9,where 
a ,  = a + A 6 ,  P = b + B6,  and 6 can be regarded as 
fixed or diffuse; see the discussion by De Jong (1991). 
The disturbances E, and 7, are assumed to be uncor- 
related, but this restriction can be relaxed. A structural 
time series model is placed in state-space form, with 
the system vector 2, and system matrix T,  being time- 
invariant; see Harvey (1989). Regression effects and 
outlier and structural change interventions are modeled 
by use of the system vector x, and system matrix W,. 

Following De Jong (1991), we set up an augmented 
Kalman filter that gives all,-,, the estimator, made at 
time t - 1 , of the state vector at time t when 6 is assumed 
to be 0 ,  together with a matrix that allows for the 
correction when 6 is not 0 .  Thus the actual estimator 
of the state vector a,, made at time t - 1, is all,-, + 
ArI,-,6 = A;,-, (1 ,6 ' ) ' ,where AI,- ,  is the partitioned 
matrix (arlr-,,ArI,-,). The one-step-ahead prediction 
errors associated with A;,-, are contained in the row 
vector v: = (v, ,  v:) so that the scalar v, and row vector 
v: correspond to all,-, and Arl,-,. Thus 

where Bt is f b ,  B )  and 0 is a row vector of zeros. The 
filter for A,;,-, is the recursion 

where k ,  = T,+ lP,l,- ,z:lf, and f, = z,PIl,- ,z: + h,. The 
mean squared error matrix of the estimated state vector 
at time t - 1,P,,,- is evaluated by the matrix recursion 
Pr+llr = T,, lP,lr-lL: + Q,, where L ,  = T,+, - k,z:. 
The starting values of the recursions are ATlo= ( a ,A)  
and Pllo= 0 .  

In addition, we have the following recursion: M, = 

M,- + vfv:'lf,, (t = 1 ,  . . . ,T>, where MI is partitioned 
as 

and M ,  = 0. From this recursion, we obtain the esti- 
mator of 6 at time t; that is, m, = S;'s, with mean 
squared error matrix S;'. We also obtain the log- 
likelihood as log L = -4T log 27r - 4E,T=, log f, -
t (qT  - S>ST 'ST).  

The smoothed estimator of the disturbances and the 
corresponding mean squared error matrices are ob-
tained by the following algorithm derived by Koopman 
(1992): E., = h,(e, + e:mT), MSE(E,) = h,  - h:(d, -
e,*S;le,*'), and 4, = Q,(r,-, + R,-,mT),  MSE(4,)  = 

Qt - Qr(Nr- i  - R r - , S ~ ' R : - l ) Q r  ( t  = T ,  . . . , I ) ,  
where the row vector e: = (e,, e:), the scalar d,, the 
matrices R: = (r,, R,), and N,  are calculated by the 
backward recursions e: = v:lf, - k:R:, d ,  = l l f ,  + 
k:N,k,, and R:-, = z:v:lf, + L:R: , N,-,  = z;zJf, + 
L:N,L, (t = T ,  . . . , I ) ,  started off with R$ = 0 and 
NT = 0 .  The auxiliary residuals are obtained by stan- 
dardizing E., and 4, using their mean squared errors. 

The disturbance smoother requires, for a typical 
structural time series model, about the same number 
of computations as for the Kalman filter. The storage 
requirement is limited to v:, f,, and k,. Koopman (in 
press) also discussed a more general disturbance 
smoother, efficient methods of calculation, and a quick- 
state smoother. 

[Received July 1991. Revised March 1992.1 
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